direct product, metabelian, supersoluble, monomial, A-group
Aliases: D72, C7⋊1D14, C72⋊C22, C7⋊D7⋊C2, (C7×D7)⋊C2, SmallGroup(196,9)
Series: Derived ►Chief ►Lower central ►Upper central
C72 — D72 |
Generators and relations for D72
G = < a,b,c,d | a7=b2=c7=d2=1, bab=a-1, ac=ca, ad=da, bc=cb, bd=db, dcd=c-1 >
Character table of D72
class | 1 | 2A | 2B | 2C | 7A | 7B | 7C | 7D | 7E | 7F | 7G | 7H | 7I | 7J | 7K | 7L | 7M | 7N | 7O | 14A | 14B | 14C | 14D | 14E | 14F | |
size | 1 | 7 | 7 | 49 | 2 | 2 | 2 | 2 | 2 | 2 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 14 | 14 | 14 | 14 | 14 | 14 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | -1 | 1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | -1 | linear of order 2 |
ρ3 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ4 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | 1 | linear of order 2 |
ρ5 | 2 | -2 | 0 | 0 | 2 | 2 | 2 | ζ74+ζ73 | ζ76+ζ7 | ζ75+ζ72 | ζ76+ζ7 | ζ75+ζ72 | ζ76+ζ7 | ζ74+ζ73 | ζ76+ζ7 | ζ75+ζ72 | ζ75+ζ72 | ζ74+ζ73 | ζ74+ζ73 | -ζ75-ζ72 | -ζ74-ζ73 | 0 | 0 | 0 | -ζ76-ζ7 | orthogonal lifted from D14 |
ρ6 | 2 | -2 | 0 | 0 | 2 | 2 | 2 | ζ76+ζ7 | ζ75+ζ72 | ζ74+ζ73 | ζ75+ζ72 | ζ74+ζ73 | ζ75+ζ72 | ζ76+ζ7 | ζ75+ζ72 | ζ74+ζ73 | ζ74+ζ73 | ζ76+ζ7 | ζ76+ζ7 | -ζ74-ζ73 | -ζ76-ζ7 | 0 | 0 | 0 | -ζ75-ζ72 | orthogonal lifted from D14 |
ρ7 | 2 | -2 | 0 | 0 | 2 | 2 | 2 | ζ75+ζ72 | ζ74+ζ73 | ζ76+ζ7 | ζ74+ζ73 | ζ76+ζ7 | ζ74+ζ73 | ζ75+ζ72 | ζ74+ζ73 | ζ76+ζ7 | ζ76+ζ7 | ζ75+ζ72 | ζ75+ζ72 | -ζ76-ζ7 | -ζ75-ζ72 | 0 | 0 | 0 | -ζ74-ζ73 | orthogonal lifted from D14 |
ρ8 | 2 | 0 | -2 | 0 | ζ74+ζ73 | ζ76+ζ7 | ζ75+ζ72 | 2 | 2 | 2 | ζ76+ζ7 | ζ76+ζ7 | ζ74+ζ73 | ζ75+ζ72 | ζ75+ζ72 | ζ75+ζ72 | ζ74+ζ73 | ζ74+ζ73 | ζ76+ζ7 | 0 | 0 | -ζ74-ζ73 | -ζ76-ζ7 | -ζ75-ζ72 | 0 | orthogonal lifted from D14 |
ρ9 | 2 | 0 | -2 | 0 | ζ76+ζ7 | ζ75+ζ72 | ζ74+ζ73 | 2 | 2 | 2 | ζ75+ζ72 | ζ75+ζ72 | ζ76+ζ7 | ζ74+ζ73 | ζ74+ζ73 | ζ74+ζ73 | ζ76+ζ7 | ζ76+ζ7 | ζ75+ζ72 | 0 | 0 | -ζ76-ζ7 | -ζ75-ζ72 | -ζ74-ζ73 | 0 | orthogonal lifted from D14 |
ρ10 | 2 | 2 | 0 | 0 | 2 | 2 | 2 | ζ75+ζ72 | ζ74+ζ73 | ζ76+ζ7 | ζ74+ζ73 | ζ76+ζ7 | ζ74+ζ73 | ζ75+ζ72 | ζ74+ζ73 | ζ76+ζ7 | ζ76+ζ7 | ζ75+ζ72 | ζ75+ζ72 | ζ76+ζ7 | ζ75+ζ72 | 0 | 0 | 0 | ζ74+ζ73 | orthogonal lifted from D7 |
ρ11 | 2 | 0 | -2 | 0 | ζ75+ζ72 | ζ74+ζ73 | ζ76+ζ7 | 2 | 2 | 2 | ζ74+ζ73 | ζ74+ζ73 | ζ75+ζ72 | ζ76+ζ7 | ζ76+ζ7 | ζ76+ζ7 | ζ75+ζ72 | ζ75+ζ72 | ζ74+ζ73 | 0 | 0 | -ζ75-ζ72 | -ζ74-ζ73 | -ζ76-ζ7 | 0 | orthogonal lifted from D14 |
ρ12 | 2 | 0 | 2 | 0 | ζ76+ζ7 | ζ75+ζ72 | ζ74+ζ73 | 2 | 2 | 2 | ζ75+ζ72 | ζ75+ζ72 | ζ76+ζ7 | ζ74+ζ73 | ζ74+ζ73 | ζ74+ζ73 | ζ76+ζ7 | ζ76+ζ7 | ζ75+ζ72 | 0 | 0 | ζ76+ζ7 | ζ75+ζ72 | ζ74+ζ73 | 0 | orthogonal lifted from D7 |
ρ13 | 2 | 0 | 2 | 0 | ζ75+ζ72 | ζ74+ζ73 | ζ76+ζ7 | 2 | 2 | 2 | ζ74+ζ73 | ζ74+ζ73 | ζ75+ζ72 | ζ76+ζ7 | ζ76+ζ7 | ζ76+ζ7 | ζ75+ζ72 | ζ75+ζ72 | ζ74+ζ73 | 0 | 0 | ζ75+ζ72 | ζ74+ζ73 | ζ76+ζ7 | 0 | orthogonal lifted from D7 |
ρ14 | 2 | 0 | 2 | 0 | ζ74+ζ73 | ζ76+ζ7 | ζ75+ζ72 | 2 | 2 | 2 | ζ76+ζ7 | ζ76+ζ7 | ζ74+ζ73 | ζ75+ζ72 | ζ75+ζ72 | ζ75+ζ72 | ζ74+ζ73 | ζ74+ζ73 | ζ76+ζ7 | 0 | 0 | ζ74+ζ73 | ζ76+ζ7 | ζ75+ζ72 | 0 | orthogonal lifted from D7 |
ρ15 | 2 | 2 | 0 | 0 | 2 | 2 | 2 | ζ74+ζ73 | ζ76+ζ7 | ζ75+ζ72 | ζ76+ζ7 | ζ75+ζ72 | ζ76+ζ7 | ζ74+ζ73 | ζ76+ζ7 | ζ75+ζ72 | ζ75+ζ72 | ζ74+ζ73 | ζ74+ζ73 | ζ75+ζ72 | ζ74+ζ73 | 0 | 0 | 0 | ζ76+ζ7 | orthogonal lifted from D7 |
ρ16 | 2 | 2 | 0 | 0 | 2 | 2 | 2 | ζ76+ζ7 | ζ75+ζ72 | ζ74+ζ73 | ζ75+ζ72 | ζ74+ζ73 | ζ75+ζ72 | ζ76+ζ7 | ζ75+ζ72 | ζ74+ζ73 | ζ74+ζ73 | ζ76+ζ7 | ζ76+ζ7 | ζ74+ζ73 | ζ76+ζ7 | 0 | 0 | 0 | ζ75+ζ72 | orthogonal lifted from D7 |
ρ17 | 4 | 0 | 0 | 0 | 2ζ76+2ζ7 | 2ζ75+2ζ72 | 2ζ74+2ζ73 | 2ζ74+2ζ73 | 2ζ76+2ζ7 | 2ζ75+2ζ72 | -ζ75-ζ72-1 | ζ74+ζ73+2 | ζ75+ζ72+2 | ζ76+ζ7+2 | -ζ76-ζ7-1 | -ζ74-ζ73-1 | -ζ75-ζ72-1 | -ζ76-ζ7-1 | -ζ74-ζ73-1 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal faithful |
ρ18 | 4 | 0 | 0 | 0 | 2ζ74+2ζ73 | 2ζ76+2ζ7 | 2ζ75+2ζ72 | 2ζ75+2ζ72 | 2ζ74+2ζ73 | 2ζ76+2ζ7 | -ζ76-ζ7-1 | ζ75+ζ72+2 | ζ76+ζ7+2 | ζ74+ζ73+2 | -ζ74-ζ73-1 | -ζ75-ζ72-1 | -ζ76-ζ7-1 | -ζ74-ζ73-1 | -ζ75-ζ72-1 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal faithful |
ρ19 | 4 | 0 | 0 | 0 | 2ζ74+2ζ73 | 2ζ76+2ζ7 | 2ζ75+2ζ72 | 2ζ74+2ζ73 | 2ζ76+2ζ7 | 2ζ75+2ζ72 | ζ75+ζ72+2 | -ζ75-ζ72-1 | -ζ76-ζ7-1 | -ζ74-ζ73-1 | -ζ75-ζ72-1 | ζ74+ζ73+2 | -ζ74-ζ73-1 | ζ76+ζ7+2 | -ζ76-ζ7-1 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal faithful |
ρ20 | 4 | 0 | 0 | 0 | 2ζ74+2ζ73 | 2ζ76+2ζ7 | 2ζ75+2ζ72 | 2ζ76+2ζ7 | 2ζ75+2ζ72 | 2ζ74+2ζ73 | -ζ75-ζ72-1 | -ζ76-ζ7-1 | -ζ74-ζ73-1 | -ζ75-ζ72-1 | ζ74+ζ73+2 | -ζ74-ζ73-1 | ζ76+ζ7+2 | -ζ76-ζ7-1 | ζ75+ζ72+2 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal faithful |
ρ21 | 4 | 0 | 0 | 0 | 2ζ76+2ζ7 | 2ζ75+2ζ72 | 2ζ74+2ζ73 | 2ζ75+2ζ72 | 2ζ74+2ζ73 | 2ζ76+2ζ7 | -ζ74-ζ73-1 | -ζ75-ζ72-1 | -ζ76-ζ7-1 | -ζ74-ζ73-1 | ζ76+ζ7+2 | -ζ76-ζ7-1 | ζ75+ζ72+2 | -ζ75-ζ72-1 | ζ74+ζ73+2 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal faithful |
ρ22 | 4 | 0 | 0 | 0 | 2ζ75+2ζ72 | 2ζ74+2ζ73 | 2ζ76+2ζ7 | 2ζ74+2ζ73 | 2ζ76+2ζ7 | 2ζ75+2ζ72 | -ζ76-ζ7-1 | -ζ74-ζ73-1 | -ζ75-ζ72-1 | -ζ76-ζ7-1 | ζ75+ζ72+2 | -ζ75-ζ72-1 | ζ74+ζ73+2 | -ζ74-ζ73-1 | ζ76+ζ7+2 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal faithful |
ρ23 | 4 | 0 | 0 | 0 | 2ζ75+2ζ72 | 2ζ74+2ζ73 | 2ζ76+2ζ7 | 2ζ76+2ζ7 | 2ζ75+2ζ72 | 2ζ74+2ζ73 | -ζ74-ζ73-1 | ζ76+ζ7+2 | ζ74+ζ73+2 | ζ75+ζ72+2 | -ζ75-ζ72-1 | -ζ76-ζ7-1 | -ζ74-ζ73-1 | -ζ75-ζ72-1 | -ζ76-ζ7-1 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal faithful |
ρ24 | 4 | 0 | 0 | 0 | 2ζ75+2ζ72 | 2ζ74+2ζ73 | 2ζ76+2ζ7 | 2ζ75+2ζ72 | 2ζ74+2ζ73 | 2ζ76+2ζ7 | ζ76+ζ7+2 | -ζ76-ζ7-1 | -ζ74-ζ73-1 | -ζ75-ζ72-1 | -ζ76-ζ7-1 | ζ75+ζ72+2 | -ζ75-ζ72-1 | ζ74+ζ73+2 | -ζ74-ζ73-1 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal faithful |
ρ25 | 4 | 0 | 0 | 0 | 2ζ76+2ζ7 | 2ζ75+2ζ72 | 2ζ74+2ζ73 | 2ζ76+2ζ7 | 2ζ75+2ζ72 | 2ζ74+2ζ73 | ζ74+ζ73+2 | -ζ74-ζ73-1 | -ζ75-ζ72-1 | -ζ76-ζ7-1 | -ζ74-ζ73-1 | ζ76+ζ7+2 | -ζ76-ζ7-1 | ζ75+ζ72+2 | -ζ75-ζ72-1 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal faithful |
(1 2 3 4 5 6 7)(8 9 10 11 12 13 14)
(1 8)(2 14)(3 13)(4 12)(5 11)(6 10)(7 9)
(1 3 5 7 2 4 6)(8 13 11 9 14 12 10)
(1 11)(2 12)(3 13)(4 14)(5 8)(6 9)(7 10)
G:=sub<Sym(14)| (1,2,3,4,5,6,7)(8,9,10,11,12,13,14), (1,8)(2,14)(3,13)(4,12)(5,11)(6,10)(7,9), (1,3,5,7,2,4,6)(8,13,11,9,14,12,10), (1,11)(2,12)(3,13)(4,14)(5,8)(6,9)(7,10)>;
G:=Group( (1,2,3,4,5,6,7)(8,9,10,11,12,13,14), (1,8)(2,14)(3,13)(4,12)(5,11)(6,10)(7,9), (1,3,5,7,2,4,6)(8,13,11,9,14,12,10), (1,11)(2,12)(3,13)(4,14)(5,8)(6,9)(7,10) );
G=PermutationGroup([[(1,2,3,4,5,6,7),(8,9,10,11,12,13,14)], [(1,8),(2,14),(3,13),(4,12),(5,11),(6,10),(7,9)], [(1,3,5,7,2,4,6),(8,13,11,9,14,12,10)], [(1,11),(2,12),(3,13),(4,14),(5,8),(6,9),(7,10)]])
G:=TransitiveGroup(14,13);
(1 2 3 4 5 6 7)(8 9 10 11 12 13 14)(15 16 17 18 19 20 21)(22 23 24 25 26 27 28)
(1 8)(2 14)(3 13)(4 12)(5 11)(6 10)(7 9)(15 26)(16 25)(17 24)(18 23)(19 22)(20 28)(21 27)
(1 3 5 7 2 4 6)(8 13 11 9 14 12 10)(15 20 18 16 21 19 17)(22 24 26 28 23 25 27)
(1 21)(2 15)(3 16)(4 17)(5 18)(6 19)(7 20)(8 27)(9 28)(10 22)(11 23)(12 24)(13 25)(14 26)
G:=sub<Sym(28)| (1,2,3,4,5,6,7)(8,9,10,11,12,13,14)(15,16,17,18,19,20,21)(22,23,24,25,26,27,28), (1,8)(2,14)(3,13)(4,12)(5,11)(6,10)(7,9)(15,26)(16,25)(17,24)(18,23)(19,22)(20,28)(21,27), (1,3,5,7,2,4,6)(8,13,11,9,14,12,10)(15,20,18,16,21,19,17)(22,24,26,28,23,25,27), (1,21)(2,15)(3,16)(4,17)(5,18)(6,19)(7,20)(8,27)(9,28)(10,22)(11,23)(12,24)(13,25)(14,26)>;
G:=Group( (1,2,3,4,5,6,7)(8,9,10,11,12,13,14)(15,16,17,18,19,20,21)(22,23,24,25,26,27,28), (1,8)(2,14)(3,13)(4,12)(5,11)(6,10)(7,9)(15,26)(16,25)(17,24)(18,23)(19,22)(20,28)(21,27), (1,3,5,7,2,4,6)(8,13,11,9,14,12,10)(15,20,18,16,21,19,17)(22,24,26,28,23,25,27), (1,21)(2,15)(3,16)(4,17)(5,18)(6,19)(7,20)(8,27)(9,28)(10,22)(11,23)(12,24)(13,25)(14,26) );
G=PermutationGroup([[(1,2,3,4,5,6,7),(8,9,10,11,12,13,14),(15,16,17,18,19,20,21),(22,23,24,25,26,27,28)], [(1,8),(2,14),(3,13),(4,12),(5,11),(6,10),(7,9),(15,26),(16,25),(17,24),(18,23),(19,22),(20,28),(21,27)], [(1,3,5,7,2,4,6),(8,13,11,9,14,12,10),(15,20,18,16,21,19,17),(22,24,26,28,23,25,27)], [(1,21),(2,15),(3,16),(4,17),(5,18),(6,19),(7,20),(8,27),(9,28),(10,22),(11,23),(12,24),(13,25),(14,26)]])
G:=TransitiveGroup(28,36);
D72 is a maximal subgroup of
D7≀C2
D72 is a maximal quotient of Dic7⋊2D7 C72⋊2D4 C7⋊D28 C72⋊2Q8
action | f(x) | Disc(f) |
---|---|---|
14T13 | x14-2x13-29x12-222x11-352x10+3498x9+18163x8+46467x7+92188x6+128405x5+96637x4+31142x3+7064x2+6304x+2432 | 236·74·232·7111·1517·14232·17232·1610392·17685172 |
Matrix representation of D72 ►in GL4(𝔽29) generated by
1 | 0 | 0 | 0 |
0 | 1 | 0 | 0 |
0 | 0 | 7 | 4 |
0 | 0 | 7 | 0 |
28 | 0 | 0 | 0 |
0 | 28 | 0 | 0 |
0 | 0 | 19 | 11 |
0 | 0 | 20 | 10 |
10 | 18 | 0 | 0 |
17 | 22 | 0 | 0 |
0 | 0 | 1 | 0 |
0 | 0 | 0 | 1 |
28 | 1 | 0 | 0 |
0 | 1 | 0 | 0 |
0 | 0 | 28 | 0 |
0 | 0 | 0 | 28 |
G:=sub<GL(4,GF(29))| [1,0,0,0,0,1,0,0,0,0,7,7,0,0,4,0],[28,0,0,0,0,28,0,0,0,0,19,20,0,0,11,10],[10,17,0,0,18,22,0,0,0,0,1,0,0,0,0,1],[28,0,0,0,1,1,0,0,0,0,28,0,0,0,0,28] >;
D72 in GAP, Magma, Sage, TeX
D_7^2
% in TeX
G:=Group("D7^2");
// GroupNames label
G:=SmallGroup(196,9);
// by ID
G=gap.SmallGroup(196,9);
# by ID
G:=PCGroup([4,-2,-2,-7,-7,150,2691]);
// Polycyclic
G:=Group<a,b,c,d|a^7=b^2=c^7=d^2=1,b*a*b=a^-1,a*c=c*a,a*d=d*a,b*c=c*b,b*d=d*b,d*c*d=c^-1>;
// generators/relations
Export
Subgroup lattice of D72 in TeX
Character table of D72 in TeX